Rotation Invariant Indexing For Image Using Zernike Moments and R–Tree

نویسندگان

  • Saptadi Nugroho
  • Darmawan Utomo
چکیده

The Zernike moment algorithm and R-Tree algorithm are known as state of the art in the recognition of images and in the multimedia database respectively. The methods of storing the images and retrieving the similar images based on a query image automatically are the problems in the image database. This paper proposes the method to combine the Zernike moments algorithm and the R–tree algorithm in the image database. The indices of images which are retrieved from the extraction process using Zernike moments algorithm are used as the multidimensional indices to recognize the images. The multidimensional indices of Zernike moments which are stored in the R–tree are compared to the magnitudes of Zernike moments of a query image for searching the similar images. The result shows that the combination of these algorithms can be used efficiently in the image database because the recognition accuracy rate using Zernike moments algorithm is 95.20%.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pseudo Zernike Moment-based Multi-frame Super Resolution

The goal of multi-frame Super Resolution (SR) is to fuse multiple Low Resolution (LR) images to produce one High Resolution (HR) image. The major challenge of classic SR approaches is accurate motion estimation between the frames. To handle this challenge, fuzzy motion estimation method has been proposed that replaces value of each pixel using the weighted averaging all its neighboring pixels i...

متن کامل

Invariant Image Watermarking Using Accurate Zernike Moments

problem statement: Digital image watermarking is the most popular method for image authentication, copyright protection and content description. Zernike moments are the most widely used moments in image processing and pattern recognition. The magnitudes of Zernike moments are rotation invariant so they can be used just as a watermark signal or be further modified to carry embedded data. The com...

متن کامل

Object recognition using a neural network and invariant Zernike features

In this paper, a neural network (NN) based approach for translation, scale, and rotation invariant recognition of objects is presented. The utilized network is a Multi-Layer Perceptron (MLP) classifier with one hidden layer. The back-propagation learning is used for its training. The image is represented by rotation invariant features which are the magnitudes of the Zernike moments of the image...

متن کامل

Geometric Invariant Robust Image Hashing Via Zernike Moment

Robust image hashing methods require the robustness to content preserving processing and geometric transform. Zernike moment is a local image feature descriptor whose magnitude components are rotationally invariant and most suitable for image hashing application. In this paper, we proposed Geometric invariant robust image hashing via zernike momment. Normalized zernike moments of an image are u...

متن کامل

A Shape Descriptor Using Complex Moment Invariants

This paper proposes a robust and effective shape feature, which is based on a set of orthogonal complex moments of images known as Zernike moments. Zernike moment phase is usually not used in image description since it’s sensitive to image rotations. However, phase captures important image information, which is revealed by our numerical analysis of image reconstruction. We therefore propose com...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011